

# **Ozone Mode of Action**

Sabine Lange, Ph.D. Toxicology Division Texas Commission on Environmental Quality Sabine.Lange@tceq.texas.gov



## Ozone Dosimetry & Uptake

- Ozone is a highly-reactive, poorly water soluble gas at room temperature, and it is a respiratory toxicant;
- Ozone is scavenged by ventilation systems and indoor surfaces, and therefore is primarily an outdoor pollutant
- ~50% reacts in the head (nose, mouth, pharynx),~7% in the larynx/trachea and ~43% in the lungs (little in the alveolae). More in alveolae with exercise
- The respiratory tract lining fluid contains antioxidants (primarily ascorbic acid, glutathione, and uric acid) that can react with ozone and prevent it from producing damaging secondary reaction products



# Ozone Reactions in the Respiratory Tract

 In the respiratory tract ozone diffuses across and reacts with constituents of the epithelial lining fluid (ELF)



Source: http://www.epa.gov/apti/ozonehealth/population.html



### Ozone Mode of Action

#### Mode of Action/Possible Pathways



Figure 5-8 The modes of action/possible pathways underlying the health effects resulting from inhalation exposure to O<sub>3</sub>.

Source: US EPA ISA 2013



## Summary of MOA

- Ozone is a respiratory toxicant that reacts with antioxidants, proteins, and lipids in the respiratory tract lining fluid
- Ozone (or, more likely, its secondary reaction products) cause several respiratory effects:
  - Nervous system activation  $\rightarrow$  spirometric effects
  - Inflammation
  - Increased epithelial permeability
  - Airway hyper-responsiveness
- The mechanisms of antioxidant depletion of ozone suggest a threshold of ozone-induced respiratory effects
- Uncertainties in the data include relating experimental doses to ambient doses



# References

- US EPA. 2013. "Integrated Science Assessment for Ozone and Related Photochemical Oxidants (Final)." National Center for Environmental Assessment (NCEA). EPA/600/R– 10/076F. 1251p., February.
- Mudway, IS; Blomberg, A; Frew, AJ; Holgate, ST; Sandstrom, T; Kelly, FJ. 1999. "Antioxidant consumption and repletion kinetics in nasal lavage fluid following exposure of healthy human volunteers to ozone." *Eur. Respir. J.* 13:1429-1438.
- Mudway, IS; Kelly, FJ. 2004. "An investigation of inhaled ozone dose and the magnitude of airway inflammation in healthy adults: Online data supplement." *Am. J. Respir. Crit. Care Med.* 169:1089-1095.