Read Across, SARs and QSARs for Acute Inhalation Toxicity

Tiffany Bredfeldt
Carla Kinslow
Roberta Grant
Problem Formulation

- Many chemicals have little or no toxicological data
- Concern regarding potential toxicity of chemicals
- Newer legislation regarding chemical safety
- Need to derive toxicity factors for limited toxicity data (LTD) chemicals
- Sustainable methods and reduced animal testing
 - Generic approaches
 - Read across or extrapolations
 - SAR/QSAR
TCEQ Approaches for LTD Chemicals

- Structural Surrogate
- Tiered Approach
- Route-to-Route Extrapolation
- N-L Ratio
 - Calculate LC50 by N-L (NOAEL-LC₅₀ Ratio)
 - Grant et al., 2007
TCEQ Approaches for LTD Chemicals

- **Tier I**
 - Emission Controls
 - (Best-Available-Control Technology)
 - Threshold of Regulation
 - Default ESL = $2 \mu g/m^3$

- **Tier II**
 - Use LC$_{50}$ Data
 - Generic ESL
 - N to L Ratio
 - Surrogate

- **Tier III**
 - Relative Toxicity/Potency Approach
 - Generic ESL
 - Read Across SAR/QSAR

Former Case Study
<table>
<thead>
<tr>
<th>Structure</th>
<th>CAS #</th>
<th>Name</th>
<th>Physiochemical Properties</th>
<th>LC50 (rat) 4 h (experimental data)</th>
<th>LD50 (rat) (TEST-experimental data)</th>
<th>TEST Software- Nearest Neighbor (LD50 rat)</th>
<th>TEST Software- Hierarchical Clustering (LD50 rat)</th>
<th>RD50 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>624-83-9</td>
<td>methyl isocyanate</td>
<td>MW = 57.05, VP = 531 mm Hg 25°C</td>
<td>7 ppm</td>
<td>51.56 mg/kg</td>
<td>381.65 mg/kg</td>
<td>62.02 mg/kg (24-162)</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>822-06-0</td>
<td>hexamethylene diisocyanate</td>
<td>MW = 168.22, VP = 0.05 mm Hg 25°C</td>
<td>18.2 ppm</td>
<td>737.7 mg/kg</td>
<td>4129.3 mg/kg</td>
<td>1054.17 mg/kg (810-1371)</td>
<td>0.35 (1h, mice)</td>
</tr>
<tr>
<td></td>
<td>584-84-9</td>
<td>2,6 - toluene diisocyanate</td>
<td>MW = 174.15, VP = 0.05 mm Hg 25°C</td>
<td>13.9 ppm</td>
<td>5793.93 mg/kg</td>
<td>5065.71 mg/kg</td>
<td>3913.86 mg/kg (2471-6200)</td>
<td>0.39 (1h, mice)</td>
</tr>
<tr>
<td></td>
<td>101-68-8</td>
<td>4,4’ diphenyl methane diisocyanate</td>
<td>MW = 250.25, VP = 0.0003 mm Hg 25°C</td>
<td>16.5-18 ppm</td>
<td>9191.97 mg/kg</td>
<td>6291.33 mg/kg</td>
<td>10298.44 mg/kg (6478-16370)</td>
<td>4.8 (1h, mice)</td>
</tr>
<tr>
<td></td>
<td>51944-41-3</td>
<td>4-Cyanodiphenyl-methane diisocyanate</td>
<td>MW=291.26, VP = 0 mm Hg 25°C</td>
<td>ND</td>
<td>20012.93 mg/kg</td>
<td>5942.61 mg/kg</td>
<td>18895.13 mg/kg (11684-30558)</td>
<td>ND</td>
</tr>
</tbody>
</table>

- **MW**: Molecular Weight
- **VP**: Vapour Pressure
<table>
<thead>
<tr>
<th>Structure</th>
<th>CAS #</th>
<th>Name</th>
<th>Physiochemical Properties</th>
<th>LC50 (rat) 4 h (experimental data)</th>
<th>LD50 (rat) (TEST-experimental data)</th>
<th>TEST Software- Nearest Neighbor (LD50 rat)</th>
<th>TEST Software- Hierarchical Clustering (LD50 rat)</th>
<th>RD50 (ppm) 10 minute exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50-00-0</td>
<td>formaldehyde</td>
<td>MW = 30 VP = 3890 mm Hg</td>
<td>83.5 ppm</td>
<td>ND</td>
<td>1594.25 mg/kg</td>
<td>190.19 mg/kg (23.35-1548.86)</td>
<td>3 ppm (rat)</td>
</tr>
<tr>
<td></td>
<td>75-07-0</td>
<td>acetaldehyde</td>
<td>MW = 44 VP = 902 mm Hg</td>
<td>13344 ppm</td>
<td>660.76 mg/kg</td>
<td>1044.83 mg/kg</td>
<td>433.38 mg/kg (4.13-45451.06)</td>
<td>13.8 ppm (rat)</td>
</tr>
<tr>
<td></td>
<td>123-38-6</td>
<td>propionaldehyde</td>
<td>MW = 50 VP = mm Hg</td>
<td>3250 ppm</td>
<td>1409.62 mg/kg</td>
<td>134.1 mg/kg</td>
<td>458.01 mg/kg (236.60-886.63)</td>
<td>2932 ppm (rat)</td>
</tr>
<tr>
<td></td>
<td>123-72-8</td>
<td>butyraldehyde</td>
<td>MW = 72 VP = 72 mm Hg</td>
<td>7500 ppm</td>
<td>2489.18 mg/kg</td>
<td>859.12 mg/kg</td>
<td>2078 ppm (rat)</td>
<td>4946 ppm (rat)</td>
</tr>
<tr>
<td></td>
<td>110-62-3</td>
<td>valeraldehyde</td>
<td>MW = 86 VP = 50 mm Hg</td>
<td>ND</td>
<td>4584.11 mg/kg</td>
<td>2116.36 mg/kg</td>
<td>1532 ppm **</td>
<td>2078 ppm (rat)</td>
</tr>
</tbody>
</table>

By definition from the Haz Map page, RD50 Concentration producing a 50% decrease in respiratory rate in experimental animals following a 10-minute exposure.

Approaches for LTD Chemicals: Conclusions

• Derivation of a toxicity factor for an LTD chemical is dependent on available resources
• Approaches are designed to be conservative and produce generic toxicity factors that are health protective
• Inhalation can be highly variable
• Oral toxicity trend do not necessarily inform inhalation exposure concerns
• Available QSAR models are not particularly predictive of inhalation toxicity
Intrinsic properties:
- molecular volume
- connectivity
- charge distribution
- molecular weight

Molecular structure

Physico-chemical properties:
- pKa
- log Kow
- solubility
- stability

Biological activity:
- reactivity
- biotransformation
- pharmaco-dynamics
Area = the calculated molecular planarity, which is an indication for the three dimensional structure

ΔE = measure for the oxidative activation potential by P450 system

Ke = electrophilicity parameter, indicative for directly acting carcinogens
SARs/QSARs: Strengths and Limitations

• **Estimate toxicity**
 – Select least toxic chemical suitable for industrial use
 – Estimate toxicity in case of emergency
 – Determine whether emissions would be a potential risk

• **Direct toxicity testing**
 – What data is missing? Prioritization?

• **End point specific**
 – Does a QSAR based on LD50 or LC50 data inform other endpoints?
 – Inhalation endpoints?

• **Inaccuracy in model**
 – Oral data not predictive of inhalation toxicity
 – Is the model predictive?
 – Database used to generate QSAR model:
 - Limited, heterogeneous data points
 - Representativeness of database to chemical of concern/interest
Data for QSAR Development

• Based on quality data
 – Systematic evaluation
 – Applicability
 – Heterogeneity

• Well chosen set of chemicals

• Best categorization of data
 – Structural, physicochemical, or MOA?

• What is a well-balanced training set?
 – Range of chemicals
 – High quality studies
 – Validated by comparing experimental data to predicted data

• Uncertainty
Exploratory ATSDR Models
for Inhalation Health Guidance Values

ATSDR MRLs

- Estimated log(MRL) vs. Experimental log(MRL)
- \(R^2 = 0.82, N = 24 \)

DOE TEELs

- Estimated log(PAC) vs. Experimental log(PAC)
- \(R^2 = 0.47, N = 396 \)

EPA AEGLs

- Estimated log(AEGL-3) vs. Experimental log(AEGL-3)
- **Train:** \(R^2 = 0.85, N = 175 \)
 Test: \(R^2 = 0.60, N = 14 \)

Data Quantity:
- **few** (ATSDR MRLs)
- **ample** (DOE TEELs)
- **sufficient** (EPA AEGLs)

Data Quality:
- **high** (ATSDR MRLs)
- **poor** (DOE TEELs)
- **high** (EPA AEGLs)
Exploratory ATSDR Models
for Acute Exposure Guidelines Levels at 8 hour duration of exposure

AEGL-1

Train: $R^2 = 0.84$, $N = 121$, Test: $R^2 = 0.72$, $N = 12$

AEGL-2

Train: $R^2 = 0.82$, $N = 176$, Test: $R^2 = 0.69$, $N = 18$

AEGL-3

Train: $R^2 = 0.85$, $N = 175$, Test: $R^2 = 0.60$, $N = 14$
ATSDR: Conclusions

- Available inhalation health guidance values can be modeled using QSAR methods.
- The quality of QSAR estimates can not be better than the quality of experimental data using which the models were built.
- AEGLs/ERPGs represent the most promising source of data for modeling.
ATSDR/TCEQ: Future Directions

• Parameters of the models need to be optimized to achieve the best performance
• The chemical domain of model applicability needs to be explored and additional data recruited to improve coverage, as needed
• Confidence and prediction intervals for the estimates need to be derived
• Mode-of-action, species, and uncertainty-factor stratification of the data needs to be explored
• HGV cross-extrapolation dependencies need to be determined, e.g. exposure durations and severity levels
Acknowledgements

TCEQ
Carla Kinslow, Ph.D.
Roberta Grant, Ph.D.

ATSDR
Eugene Demchuk, Ph.D.
Tracy Tie, Ph.D.
Mydzung T. Chu, MSPH

TCEQ Toxicology Division
ATSDR Computational Toxicology Group
EPA (TEST Software)
TERA
Questions/Comments??
EXPOSURE TRANSPORT METABOLISM RECEPTOR BINDING EFFECT

Chemical agent → Enzyme → Ultimate reactant → Biological endpoint

DNA or protein receptor

SAR PROPERTIES
partition coefficients, size, shape parameters
reactivity parameters: energies, 3D structures, functional groups, steric parameters, electronic properties

CARCINOGENICITY
GENOTOXICITY
TERATOGENICITY
NEUROTOXICITY
CYTOTOXICITY

CHEMICAL CLASSES
Alcohols
PAHs
halocetic acids
chlorofluoromethanes
nitrosoamines
dioxins
PAHs
PCBs
steroids

RIVM report 601516.001
QSAR Modeling Methods: Choices, Choices, Choices